What is Beautiful Soup? A Python Library Tutorial
What is Beautiful Soup?

Overview
“You didn’t write that awful page. You're just trying to get some data out of it. Beautiful Soup is here to help.”

(Opening lines of Beautiful Soup)

Beautiful Soup is a Python library for getting data out of HTML, XML, and other markup languages. Say you've
found some webpages that display data relevant to your research, such as date or address information, but that do
not provide any way of downloading the data directly. Beautiful Soup helps you pull particular content from a
webpage, remove the HTML markup, and save the information. It is a tool for web scraping that helps you clean

Gretchen E. Beasley | Beasley.ge@gmail.com | 1

http://www.crummy.com/software/BeautifulSoup/bs4/doc/

What is Beautiful Soup? A Python Library Tutorial
up and parse the documents you have pulled down from the web.

The Beautiful Soup documentation will give you a sense of variety of things that the Beautiful Soup library will
help with, from isolating titles and links, to extracting all of the text from the html tags, to altering the HTML
within the document you’'re working with.

Installing Beautiful Soup
Installing Beautiful Soup is easiest if you have pip or another Python installer already in place. If you don’t have

pip, run through a quick tutorial on installing python modules to get it running. Once you have pip installed, run
the following command in the terminal to install Beautiful Soup:

pip install beautifulsoup4

You may need to preface this line with “sudo”, which gives your computer permission to write to your root
directories and requires you to re-enter your password. This is the same logic behind you being prompted to enter
your password when you install a new program.

With sudo, the command is:

sudo pip install beautifulsoup4

MAKE ME A SANDWICH.
WHAT? MAKE
IT YOURSELF.
SUDO MAKE ME /
A SANDWICH.

OKAY.

% |

The power of sudo: ‘Sandwich’ by XKCD

Gretchen E. Beasley | Beasley.ge@gmail.com | 2

http://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://programminghistorian.org/lessons/installing-python-modules-pip

What is Beautiful Soup? A Python Library Tutorial
Application: Extracting names and URLs from an HTML page

Preview: Where we are going
Because I like to see where the finish line is before starting, I will begin with a view of what we are trying to

create. We are attempting to go from a search results page where the html page looks like this:

<table border="1" cellspacing="2" cellpadding="3">
<tbody>
<tr>

Gretchen E. Beasley | Beasley.ge@gmail.com | 3

What is Beautiful Soup? A Python Library Tutorial
<th>Member Name</th>

<th>Birth-Death</th>

</tr>

<tr>

<td>ADAMS,
George Madison</td>

<td>1837-1920</td>

</tr>

<tr>

<td>ALBERT,
William Julian</td>

<td>1816-1879</td>

</tr>

<tr>

<td>ALBRIGHT,
Charles</td>

<td>1830-1880</td>

</tr>

</tbody>

</table>

to a CSV file with names and urls that looks like this:

"ADAMS, George
Madison",http://bioguide.congress.gov/scripts/biodisplay.pl?index=A000035
"ALBERT, William
Julian",http://bioguide.congress.gov/scripts/biodisplay.pl?index=A000074
"ALBRIGHT,

Charles", http://bioguide.congress.gov/scripts/biodisplay.pl?index=A000077

using a Python script like this:

from bs4 import BeautifulSoup
import csv

soup = BeautifulSoup (open("43rd-congress.html"))
final link = soup.p.a

final link.decompose()

Gretchen E. Beasley | Beasley.ge@gmail.com | 4

What is Beautiful Soup? A Python Library Tutorial
f = csv.writer(open("43rd Congress.csv", "w"))

f.writerow(["Name", "Link"]) # Write column headers as the first line

links = soup.find all('a"')

for link in links:
names = link.contents[0]
fullLink = link.get('href"')

f.writerow([names, fullLink])

This tutorial explains to how to assemble the final code.

Get a webpage to scrape

The first step is getting a copy of the HTML page(s) want to scrape. You can combine BeautifulSoup with urllib3 to
work directly with pages on the web. This tutorial, however, focuses on using BeautifulSoup with local
(downloaded) copies of html files.

The Congressional database that we're using is not an easy one to scrape because the URL for the search results
remains the same regardless of what you're searching for. While this can be bypassed programmatically, it is
easier for our purposes to go to http://bioguide.congress.gov/biosearch/biosearch.asp, search for Congress number
43, and to save a copy of the results page.

Biographical Directory
of the

United States Congress
1774 - Present

Enter desired criteria and click Search

Last Name:

First Name:

Position: || | ' " ' : |

G —

Party:|| - P
Year OR Congress: '43|" |

| Search | | Clear |

Gretchen E. Beasley | Beasley.ge@gmail.com | 5

http://urllib3.readthedocs.org/en/latest/
http://bioguide.congress.gov/biosearch/biosearch.asp

What is Beautiful Soup? A Python Library Tutorial
Figure 1: BioGuide Interface Search for 43rd Congress

Biographical Directory
of the

United States Congress

Click Member Name to view Biography

Member Name Birth-Death Position Party state| (Ve
ADAMS, George Madison 1837-1920 ||Representative Democrat KY (1 8?; _Ei 874)
ALBERT, William Julian 1816-1879 || Representative Republican MD (187 ; _Ei 874)
ALBRIGHT, Charles 1830-1880 ||Representative Republican PA (187 ;‘ _31 874)
ALCORN, James Lusk 1816-1894 || Senator Republican MS (18?3374)
ALLISON, William Boyd 1829-1908 || Senator Republican IA (1 8?;1—31 874)
AMES, Adelbert 1835-1933 || Senator Republican i i 8?;_31 874)
ANTHONY Henry Bowen 1815-1884 || Senator Republican B 87;.31 874)
ARCHER, Stevenson 1827-1898 ||Representative Democrat MD a 8'?;3 874)
ARMSTRONG, Moses Kimball 1832-1906 ||Delegate Democrat DK (1 8?;-31 874)
ARTHUR, William Evans 1825-1897 ||Representative Democrat KY (187 ; Ei 874)

Figure 2: BioGuide Results We want to download the HTML behind this page.

Selecting “File” and “Save Page As ...” from your browser window will accomplish this (life will be easier if you
avoid using spaces in your filename). I have used “43rd-congress.html”. Move the file into the folder you want to
work in.

(To learn how to automate the downloading of HTML pages using Python, see Automated Downloading with
Wget and Downloading Multiple Records Using Query Strings.)

Identify content
One of the first things Beautiful Soup can help us with is locating content that is buried within the HTML

structure. Beautiful Soup allows you to select content based upon tags (example: soup.body.p.b finds the first bold
item inside a paragraph tag inside the body tag in the document). To get a good view of how the tags are nested in
the document, we can use the method “prettify” on our soup object.

Create a new text file called “soupexample.py” in the same location as your downloaded HTML file. This file will
contain the Python script that we will be developing over the course of the tutorial.

Gretchen E. Beasley | Beasley.ge@gmail.com | 6

https://programminghistorian.org/lessons/automated-downloading-with-wget
https://programminghistorian.org/lessons/automated-downloading-with-wget
https://programminghistorian.org/lessons/downloading-multiple-records-using-query-strings

What is Beautiful Soup? A Python Library Tutorial
To begin, import the Beautiful Soup library, open the HTML file and pass it to Beautiful Soup, and then print the

“pretty” version in the terminal.

from bs4 import BeautifulSoup
soup = BeautifulSoup(open("43rd-congress.html"))

print(soup.prettify())

Save “soupexample.py” in the folder with your HTML file and go to the command line. Navigate (use ‘cd’) to the

folder you're working in and execute the following:
python soupexample.py

You should see your terminal window fill up with a nicely indented version of the original html text (see Figure 3).
This is a visual representation of how the various tags relate to one another.

Gretchen E. Beasley | Beasley.ge@gmail.com | 7

) What is Beautiful Soup? A Python Library Tutorial
8 00 (] Beautiful Soup Tutorial — bash — 103x40 "

the-brains:Beautiful Soup Tutorial jeriwieringa$ python tutorial.py
<l-= gaved from url=(0053)http://bioguide.congress.gov/biosearch/biosearchl.asp -->
<html=>
<head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<title>
Congressional Biographical Directory
</title>
</meta>
</head=>
<body background="./43rd-congress_files/paperl.gif" text="#000000">
<table border="1" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td bgeolor="#990000" wvalign="TOP" width="100%">
<center>

</center>
</ftd>
<ftr>
</thody>
</table>
<center>

<>
<i=
Click Member Name to view Biography
=i
<

<table border="1" cellpadding="3" cellspacing="2">
<tbody>
<tr>
<th=>
Member Name
</th=>
<th=>
Birth-Death
</th>

Figure 3: ‘Pretty’ print of the BioGuide results

Using BeautifulSoup to select particular content
Remember that we are interested in only the names and URLs of the various member of the 43rd Congress.

Looking at the “pretty” version of the file, the first thing to notice is that the data we want is not too deeply
embedded in the HTML structure.

Both the names and the URLs are, most fortunately, embedded in “<a>" tags. So, we need to isolate out all of the
“<a>" tags. We can do this by updating the code in “soupexample.py” to the following:

from bs4 import BeautifulSoup
soup = BeautifulSoup (open("43rd-congress.html"))
links = soup.find all('a"')

for link in links:
print link

Gretchen E. Beasley | Beasley.ge@gmail.com | 8

What is Beautiful Soup? A Python Library Tutorial
Save and run the script again to see all of the anchor tags in the document.

python soupexample.py

One thing to notice is that there is an additional link in our file - the link for an additional search.

8 00 (] Beautiful Soup Tutorial — bash — 101x26 g"

NILLIAMS, John McKeown Sno
w</fa>
WILLIAMS, William<=/a>
WILLIAMS, William Brewster
<fam
WILLIE, Asa Hoxie
WILSHIRE, William Wallace<
fax
WILSON, Ephraim King
WILS0N, James</a=
WIL50N, Jeremiah Morrow
WILS0N, Joseph Gardner</a=
WINDOM, William</a=
WOLFE, Simeon Kalfius
WOOD, Fernando</a=
WOODFORD, Stewart Lyndon</
a=>
WO0DWORTH, Laurin Dewey</a
=
WRIGHT, George Grover
¥YOUNG, John Duncan

2 - B £ Pierce Manning Butl

- -

-

href="http://bioguide.congres
ot =

SOIn T
Figure 4: The URLs and names, plus one addition
We can get rid of this with just a few lines of code. Going back to the pretty version, notice that this last “<a>" tag
is not within the table but is within a “<p>" tag.

Gretchen E. Beasley | Beasley.ge@gmail.com | 9

) What is Beautiful Soup? A Python Library Tutorial
8 00 (] Beautiful Soup Tutorial — bash — 103x40 e

YOUNG, Pierce Manning Butler
<fax>
</td>
<td=
1836-18986
</td>
<td=
Representative
<ftd>
<td=
Democrat
</ td=>
<td align="center">
GR
</ td>
<td align="center">
43

(1873-1874)
</br>
</td>
<ftr>
</ thody>
</table>
</br>

<p align="left">

<iframe border="0 cator" sre="./43rd-congress files/indicator.html" style="d

isplay: none: border: 0: position: fixed: left: 0: top: 0:; z-index: 2147483647" width="100%">
</iframe>

</body>

</html>

i:igure 5: The rogue link

Because Beautiful Soup allows us to modify the HTML, we can remove the “<a>" that is under the “<p>" before
searching for all the “<a>" tags.

To do this, we can use the “decompose” method, which removes the specified content from the “soup”. Do be
careful when using “decompose”—you are deleting both the HTML tag and all of the data inside of that tag. If you
have not correctly isolated the data, you may be deleting information that you wanted to extract. Update the file as
below and run again.

from bs4 import BeautifulSoup
soup = BeautifulSoup (open("43rd-congress.html"))

final link = soup.p.a
final link.decompose()

links = soup.find all('a"')

Gretchen E. Beasley | Beasley.ge@gmail.com | 10

What is Beautiful Soup? A Python Library Tutorial
for link in links:

print link

‘®@ 00 (] Beautiful Soup Tutorial — bash — 10126 g"

n<fa>»

NILLIAMS, John McHeown Sno
w

WILLIAMS, William<=/a>

WILLIAMS, William Brewster
</ax

WILLIE, Asa Hoxie

WILSHIRE, William Wallace<
fa>

WILSON, Ephraim King
WILS0ON, James</a=

WILS0N, Jeremiah Morrow

WILS0N, Joseph Gardner</a=
WINDOM, William</a=>

WOLFE, Simeon Kalfius
WO0OD, Fernando</a=

KWOODFORD, Stewart Lyndon</
ax>

WO0ODWORTH, Laurin Dewey

WRIGHT, George Grover
¥YOUNG, John Duncan

¥YOUNG, Pierce Manning Butl
er</a=

the-brains:Beautiful Soup Tutorial jeriwieringa$ I

Figure 6: Successfully isolated only names and URLs
Success! We have isolated out all of the links we want and none of the links we don’t!

Stripping Tags and Writing Content to a CSV file
But, we are not done yet! There are still HTML tags surrounding the URL data that we want. And we need to save

the data into a file in order to use it for other projects.

In order to clean up the HTML tags and split the URLs from the names, we need to isolate the information from
the anchor tags. To do this, we will use two powerful, and commonly used Beautiful Soup methods: contents and
get.

Where before we told the computer to print each link, we now want the computer to separate the link into its

parts and print those separately. For the names, we can use link.contents. The “contents” method isolates out the
text from within html tags. For example, if you started with

<h2>This is my Header text</h2>

you would be left with “This is my Header text” after applying the contents method. In this case, we want the
contents inside the first tag in “link”. (There is only one tag in “link”, but since the computer doesn’t realize that,
we must tell it to use the first tag.)

Gretchen E. Beasley | Beasley.ge@gmail.com | 11

What is Beautiful Soup? A Python Library Tutorial
For the URL, however, “contents” does not work because the URL is part of the HTML tag. Instead, we will use

“get”, which allow us to pull the text associated with (is on the other side of the “=" of) the “href” element.

from bs4 import BeautifulSoup
soup = BeautifulSoup (open("43rd-congress.html"))

final link = soup.p.a
final link.decompose()

links = soup.find all('a"')

for link in links:
names = link.contents[0]
fullLink = link.get('href"')
print names
print fullLink

‘@00 (] Beautiful Soup Tutorial — bash — 101x26 e

http://bioguide.congress.gov/scripts/biodisplay.pl?index=W000567
WILSOM, Ephraim King
http://bioguide.congress.gov/scripts/biodisplay.pl ?index=w000577
WILSOM, James
http://bioguide.congress.gov/scripts/biodisplay.pl?index=W000590
WILSOM, Jeremiah Morrow
http://bioguide.congress.gov/scripts/biodisplay.pl?index=W000596
WILSON, Joseph Gardner
http://bioguide.congress.gov/scripts/biodisplay.pl?index=w000605
WINDOM, William
http://bioguide.congress.gov/scripts/biodisplay.pl?index=W000629
WOLFE, Simeon Kalfius
http://bioguide.congress.gov/scripts/biodisplay.pl?index=wW000677
WOOD, Fernando
http://bioguide.congress.gov/scripts/biodisplay.pl?index=W000694
WOODFORD, Stewart Lyndon
http://bioguide.congress.gov/scripts/biodisplay.pl?index=w000713
WOODWORTH, Laurin Dewey
http://bioguide.congress.gov/scripts/biodisplay.pl?index=w000735
WRIGHT, George Grover
http://bioguide.congress.gov/scripts/biodisplay.pl?index=wW000759
YOUNG, John Duncan
http://bioguide.congress.gov/scripts/biodisplay.pl?index=Y000044
YOUNG, Plerce Manning Butler
http://bioguide.congress.gov/scripts/biodisplay.pl?index=Y000048
the-brains:Beautiful Soup Tutorial jeriwieringa$ I

LFigure 7: All HTML tags have been removed

Finally, we want to use the CSV library to write the file. First, we need to import the CSV library into the script
with “import csv.” Next, we create the new CSV file when we “open” it using “csv.writer”. The “w” tells the
computer to “write” to the file. And to keep everything organized, let’s write some column headers. Finally, as
each line is processed, the name and URL information is written to our CSV file.

from bs4 import BeautifulSoup
import csv

Gretchen E. Beasley | Beasley.ge@gmail.com | 12

What is Beautiful Soup? A Python Library Tutorial

soup = BeautifulSoup (open("43rd-congress.html"))

final link = soup.p.a
final link.decompose()

f = csv.writer(open("43rd Congress.csv",

"))

f.writerow(["Name", "Link"]) # Write column headers as the first line

links = soup.find all('a"')

for link in links:

names = link.contents[0]
fullLink = link.get('href"')

f.writerow([names,

fullLink])

When executed, this gives us a clean CSV file that we can then use for other purposes.

F A
1 Name

& ADAMS, George Madison
3 ALBERT. Williarm Julian

6 ALLISOM, Wiliam Boyd

7 AMES, Adelbert

8 AMTHOMY, Henry Bowen

q _AHGHEH, Stevenson

10 ARMETROMNG, Moses Kimball

11_.»'-".FL’THL.IF{. William Ewvans

12 | ASHE, Thomas Samuel
iﬁTKINS. John DeWitt Clinton

Figure 8: CSV file of results

[Link

rrrrrrrrrrrrrrrrrrrr

hitpubioguide.congress.gow/scriptebiodisplay. pl?index=AD00274
hitp¥bicguide.congress.gov/scripts/biodisplay. pl?index=A000253

We have solved our puzzle and have extracted names and URLs from the HTML file.

Gretchen E. Beasley | Beasley.ge@gmail.com | 13

What is Beautiful Soup? A Python Library Tutorial
But wait! What if I want ALL of the data?

Let’s extend our project to capture all of the data from the webpage. We know all of our data can be found inside a
table, so let’s use “<tr>" to isolate the content that we want.

from bs4 import BeautifulSoup

soup = BeautifulSoup (open("43rd-congress.html"))

Gretchen E. Beasley | Beasley.ge@gmail.com | 14

What is Beautiful Soup? A Python Library Tutorial
final link = soup.p.a
final link.decompose()

trs = soup.find all('tr')
for tr in trs:
print tr

Looking at the print out in the terminal, you can see we have selected a lot more content than when we searched
for “<a>" tags. Now we need to sort through all of these lines to separate out the different types of data.

‘@00 {] Beautiful Soup Tutorial — bash — 142x40 .g

<td>Representative</td><td>Republican</td»<td align="center">VT</td»<td align="center">43
(1873-1874)</br></td></tr>
<tr><td>WILLARD, George</a»</td>»<td>1824-1501</td>
<td>Representative</td><td>Republican</td><td align="center">MI</td><td align="center">43
(1873-1874)</br></td></tr>

<tr»<td»WILLIAMS, Charles Grandison</td><td>1829-1892</td>
<td>Representative</td><td>Republican</td><td align="center">WI</td><td align="center"=43
({1873-1874)</br></td></tr>

<tr><td>WILLIAMS, John McKeown Snow</td><td>1818-1886</td>
<td>Representative</td><td>Republican</td><td align="center">MA</td><td align="center"=>43
(1873=1874)</br></td></tr>

<tr><td>WILLIAMS, William</td><td>1821-1896</td>
<td>Representative</td><td»>Republican</td><td align="center">IN</td><td align="center">43
(1873-1874)</bra></td></tr>

<tr><td>WILLIAMS, William Brewster</td><td>1826=-1905</td>
<td>Representative</td><td>Republican</td><td align="center">MI</td><td align="center">43
(1873-1874)</br></td></tr>

<tr><td»WILLIE, Asa Hoxie</td><td>1829-1899</td>
<td>Representative</td><td>Democrat</td><td align="center">Ti</td><td align="center">43
({1873-1874)</br></td></tr>

<tr><td>WILSHIRE, William Wallace</td><td>1830-1888</td>
<td>Representative</td><td>Republican</td><td align="center">AR</td><td align="center">43
(1873=1874)</br></td></tr>

<tr><td>WILSON, Ephraim King</td><td>1821-1891</td>
<td>Representative</td><td>Democrat</td><td align="center">MD</td><td align="center">43
(1873-1874)</br></td></tr>

<tr><td>WILSON, James»</td><td=1835=1920</td>
<td>Representative</td><td>Republican</td><td align="center">IA</td><td align="center">43
(1873-1874)</br></td></tr>

<tr><td>WILSON, Jeremiah Morrow</td><td>1828-1901</td>
<td>Representative</td><td*Republican</td><td align="center">IN</td=<td align="center"=43
(1873-1874)</br=</td></tr>

<tr><td>WILSON, Joseph Gardner</td><td>1826-1873</td>
<td>Representative</td><td>Republican</td»<td align="center">0R</td»<td align="center">43
(1873=1874)</br></td></tr>

<tr><td>WINDOM, William</td><td>1827-1891</td>
<td>Senator</td><td>Republican</td><td align="center">MN</td><td align="center">43
(1873-1874)</br></td></tr>

<tr><td»WOLFE, Simeon Kalfius</td><td>1824-1888</td>
<td>Representative</td><td->Democrat</td><td align="center">IN</td><td align="center">43
({1873-1874)</br></td></tr>

<trr»<td»WO0D, Fernando</td><td>1812-1881</td>
<td>Representative</td><tdrDemocrat</td><td align="center"»N¥</td><td align="center">43
(1873=1874)</brr</td></tr>

<tr><td>WOODFORD, Stewart Lyndon</td><td>1835-1913</td>
<td>Representative</td><td>Republican</td><td align="center">NY</td><td align="center">43
(1873-1874)</br></td></tr>

<tr><td>WOODWORTH, Laurin Dewey</td=<td=1837-1897</td>
<td>Representative</td><td>Republican</td><td align="center">0H</td><td align="center">43
(1873-1874)</br></td></tr>

<tr><td>WRIGHT, George Grover</td><td>1820-1896</td>
<td>Senator</td><td>Republican</td><td align="center">IA</td><td align="center">43
{1873-1874)</br></td></tr>

<tr><td>YOUNG, John Duncan</td><td>1823-1910</td>
<td>Representative</td><td-Democrat</td><td align="center">K¥</td><td align="center">43
(1873=1874)</br></td></tr>

<tr><td>YOUNG, FPierce Manning Butler</a=</td><td>1836-1896</td>
<td>Representative</td»<td»Democrat</td><td align="center">GA</td><td align="center">43
(1873-1874)</br></td></tr>

the=brains:Beautiful Soup Tutorial jeriwieringa$ I '

Figure 9: All of the Table Row data
Extracting the Data
We can extract the data in two moves. First, we will isolate the link information; then, we will parse the rest of the

table row data.

For the first, let’s create a loop to search for all of the anchor tags and “get” the data associated with “href”.

from bs4 import BeautifulSoup
soup = BeautifulSoup (open("43rd-congress.html"))

final link = soup.p.a
final link.decompose()

Gretchen E. Beasley | Beasley.ge@gmail.com | 15

What is Beautiful Soup? A Python Library Tutorial
trs = soup.find all('tr')

for tr in trs:
for link in tr.find all('a'):
fulllink = link.get ('href')
print fulllink #print in terminal to verify results

We then need to run a search for the table data within the table rows. (The “print” here allows us to verify that the
code is working but is not necessary.)

from bs4 import BeautifulSoup
soup = BeautifulSoup (open("43rd-congress.html"))

final link = soup.p.a
final link.decompose()

trs = soup.find all('tr')

for tr in trs:
for link in tr.find all('a'):
fulllink = link.get ('href')
print fulllink #print in terminal to verify results

tds = tr.find all("td")

print tds

Next, we need to extract the data we want. We know that everything we want for our CSV file lives within table
data (“td”) tags. We also know that these items appear in the same order within the row. Because we are dealing
with lists, we can identify information by its position within the list. This means that the first data item in the row
is identified by [0], the second by [1], etc.

Because not all of the rows contain the same number of data items, we need to build in a way to tell the script to

move on if it encounters an error. This is the logic of the “try” and “except” block. If a particular line fails, the
script will continue on to the next line.

from bs4 import BeautifulSoup
soup = BeautifulSoup (open("43rd-congress.html"))

final link = soup.p.a
final link.decompose()

Gretchen E. Beasley | Beasley.ge@gmail.com | 16

What is Beautiful Soup? A Python Library Tutorial
trs = soup.find all('tr')

for tr in trs:
for link in tr.find all('a'):
fulllink = link.get ('href')
print fulllink #print in terminal to verify results

tds = tr.find all("td")

try: #we are using "try" because the table is not well formatted. This allows

the program to continue after encountering an error.

names = str(tds[0].get text()) # This structure isolate the item by its
column in the table and converts it into a string.

years = str(tds[1].get text())

positions = str(tds[2].get text())

parties = str(tds[3].get text())

states = str(tds[4].get text())

congress = tds[5].get text()

except:
print "bad tr string"
continue #This tells the computer to move on to the next item after it
encounters an error

print names, years, positions, parties, states, congress

Within this we are using the following structure:

years = str(tds[1].get text())

We are applying the “get text” method to the 2nd element in the row (because computers count beginning with 0)
and creating a string from the result. This we assign to the variable “years”, which we will use to create the CSV

file. We repeat this for every item in the table that we want to capture in our file.

Writing the CSV file
The last step in this file is to create the CSV file. Here we are using the same process as we did in Part I, just with
more variables.

As a result, our file will look like:

from bs4 import BeautifulSoup
import csv

Gretchen E. Beasley | Beasley.ge@gmail.com | 17

What is Beautiful Soup? A Python Library Tutorial
soup = BeautifulSoup (open("43rd-congress.html"))

final link = soup.p.a
final link.decompose()

f= csv.writer(open("43rd Congress all.csv", "w")) # Open the output file for
writing before the loop
f.writerow(["Name", "Years", "Position", "Party", "State", "Congress", "Link"]) #

Write column headers as the first line

trs = soup.find all('tr')

for tr in trs:
for link in tr.find all('a'):
fullLink = link.get ('href')

tds = tr.find all("td")

try: #we are using "try" because the table is not well formatted. This allows

the program to continue after encountering an error.

names = str(tds[0].get text()) # This structure isolate the item by its
column in the table and converts it into a string.

years = str(tds[1].get text())

positions = str(tds[2].get text())

parties = str(tds[3].get text())

states = str(tds[4].get text())

congress = tds[5].get text()

except:
print "bad tr string"
continue #This tells the computer to move on to the next item after it

encounters an error

f.writerow([names, years, positions, parties, states, congress, fullLink])

You've done it! You have created a CSV file from all of the data in the table, creating useful data from the
confusion of the html page.

Gretchen E. Beasley | Beasley.ge@gmail.com | 18

